Происходящие колебания у свиней таких показателей как холестерин, глюкоза, микро- и макроэлементы в ту или иную сторону на протяжении всего опыта существенных различий не имели и были не достоверны по сравнению с животными контрольной группы.

В последующем существенных изменений иммунологических показателей не выявили, наблюдали лишь незначительное повышение до уровня физиологической нормы глобулинов и общего белка у животных опытной группы.

Анализ полученных результатов показывает, что в сыворотке крови поросят инфицированных культурой бордетелл уменьшается количество общего белка и изменение его глобулиновых фракций. Происходит повышение содержания гамма глобулинов при одновременном снижении количества альбуминов. Это очевидно связано с нарушением обменных процессов во всем организме и, прежде всего, в печени — органе, который принимает активное участие в синтезе белков сыворотки крови.

Заключение. При экспериментальном заражении поросят возбудителем бордетеллеза существенные изменения гематологических и биохимических показателей отмечается на 5-7 день исследований. Так в периферической крови у больных животных выявлено увеличение числа лейкоцитов до 27,6±0,50х10⁹ /л против 23,5±1,41 в контроле (р<0,05), за счет абсолютного количества лимфоцитов и палочкоядерных нейтрофилов. Одновременно происходит снижение содержания в крови гемоглобина, в сыворотке крови общего белка за счет альбуминов и глобулинов. На высоком уровне эти изменения показателей сохраняются в течение двух недель. В дальнейшем наблюдается тенденция к стабилизации большинства гематологических и биохимических показателей.

Литература 1. Андросик, Н.Н. Достижения и перспективы развития ветеринарной науки / Н.Н. Андросик // Актуальные проблемы патологии сельскохозяйственных животных: материалы Международной научно-практической конференции / Белорус. НИИ эксперим. ветеринарии. – Мн.: «Хата», 2000 – С. 11-22. 2. Андросик, Н. Н. Справочник по болезням молодняка животных / Н. Н. Андросик, М. В. Якубовский, Е.А. Панковец. – Мн.: Ураджай, 1995. – С. 244–247. 3. Инфекционные болезни поросят крупных промышленных комплексов / В.С. Прудников [и др.] // Эпизоотология, иммунология, фармакология и санитария. – 2006. – №4. – С. 33-36. 4. Куриленко, А.Н. Бактериальные и вирусные болезни молодняка сельскохозяйственных животных / А.Н. Куриленко, В.Л. Крупальник, Н.В. Пименов. – Москва: КолосС, 2006. – С.133 – 139. 5. Савельева, Т.А. Эпизоотологический мониторинг на свиноводческих комплексах / Т.А. Савельева, М.А. Ананчиков. // Ученые записки УО ВГАВМ, 2004. – Т.40. – ч.1. – С.288-299.

Статья передана в печать 3.01.2011 г.

УДК 619:615.27:636.028:612.015

АКТИВНОСТЬ ПРОЦЕССОВ АНТИОКСИДАНТНОЙ СИСТЕМЫ У ЭКСПЕРИМЕНТАЛЬНЫХ ЖИВОТНЫХ НА ФОНЕ ПРИМЕНЕНИЯ ОПЫТНОГО ОБРАЗЦА НОВОГО ПРЕПАРАТА НА ОСНОВЕ БИОЭЛЕМЕНТОВ И ВИТАМИНОВ

Белькевич И.А.*, Островский А.В.**

*РУП «Институт экспериментальной ветеринарии им. С.Н. Вышелесского» г. Минск, Республика Беларусь **УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины» г. Витебск, Республика Беларусь

В статье представлены результаты изучения антиоксидантных свойств нового хелатного препарата на основе витаминов и микроэлементов. Установлено, что сконструированный препарат является эффективным донором микроэлементов, быстро инкорпорирующихся в ферменты антиоксидантной системы организма.

in article resuits of studying antioxidative properties new cheiated a preparation on the basis of vitamins and microelements are presented. it is established, that the designed preparation is the effective donor of microelements quickly incorporated in enzymes antioxidant organism systems.

Введение. Общим свойством всех антиоксидантных энзимов является присутствие в их активных центрах ионов металлов с переменной валентностью, которые, собственно, и действуют в качестве катализаторов в окислительно-восстановительных реакциях. Ионы этих металлов (Fe^{2^+} , Cu^{2^+} , Mn^{2^+} , Zn^{2^+} , Se^{2^+} , Mg^{2^+} и др.) в свободном состоянии, в зависимости от условий, выступают в качестве окислителей или восстановителей (лишь Zn и Se, как правило, играют роль редуцирующих агентов). В составе активных центров ферментов те же ионы, с одной стороны, приобретают существенно большую активность; с другой — спектр реакций, в которых они участвуют, ограничивается.

Многие эссенциальные микроэлементы являются компонентом каталитического центра ряда антиоксидантных ферментов. Например, Мп, Zn — эссенциальная часть супероксиддисмутазы [1], Se — входит в каталитический центр глутатионпероксидазы [2]. Церулоплазмин «экстрацеллюлярная» СОД — Сu-содержащий белок [3, 4]. Кофакторами фермента каталазы являются Мп и Fe [5].

Эти ферменты участвуют в торможении процессов пероксидации [6, 7].

Материалы и методы исследований. «Антимиопатик» — новый комплексный препарат на основе микроэлементов и витаминов, находящихся между собой в хелатированном состоянии.

Компоненты препарата прямо или косвенно участвуют в регулировании процессов системы перекисное окисление липидов/антиоксидантная система организма животных, что дает основание полагать, что он может быть использован в качестве препарата, обладающего антиоксидантными свойствами. При введении его, в организме создается депо, из которого происходит постепенный вынос необходимых микроэлементов и витаминов в зависимости от той или иной потребности организма.

Эксперимент проводили на 32 кроликах породы «Советская Шиншилла», исходной массой 2,5-3,0 кг. Животных выдерживали на 14-ти дневном карантине. Кормление осуществлялось в соответствии с кормовыми

нормами для соответствующего вида животных. Для экспериментальных исследований были подобраны животные активные, охотно поедающие корм, с гладким и блестящим шерстным покровом.

Группы животных формировали по принципу условных аналогов разделённых на опытную и контрольную, по 16 голов в каждой. До проведения основного опыта были проведены скрининговые исследования гомеостаза гематологических и биохимических показателей для исключения патологии, которая не диагностировалась клинически. Цель их — соблюдение чистоты проводимого эксперимента. Это связано с тем, что показатели антиоксидантной системы активно реагируют на отрицательные факторы окружающей среды.

Для оценки влияния препарата на антиоксидантный статус животных взятие крови проводили до введения препарата, на 2, 7, 14 и 21 дни эксперимента в одно и то же время — утром, натощак. Вводимая доза при однократном введении составила 240 мг на килограмм массы животного (терапевтическая доза). Кровь стабилизировали гепарином (20 ед. на 1 мл).

Определение активности *супероксиддисмутазы* (СОД), *каталазы* (КТ), *елутатионпероксидазы* (ГПО) проводили в соответствии с методическими указаниями [8, 9, 10]. Активность *церулоплазмина* (ЦП) исследовали с помощью наборов фирмы DIALAB. Измерение данного показателя проводили на биохимическом анализаторе «DIALAB AUTOLYZER» (Австрия).

Статистическую обработку результатов исследований проводили с использованием компьютерной программы StatBiom 2720.

Результаты исследований. Анализ проведенного эксперимента по определению антиоксидантных свойств препарата дал следующие результаты. Динамика ферментов антиоксидантной системы представлена в таблице 1.

Исследованиями установлено, что до введения препарата среднегрупповой уровень СОД у животных опытной и контрольной групп был практически на одном уровне и составлял соответственно 32,07±0,24 и 32,19±0,34 U/мл.

Динамика СОД у кроликов, которым вводили препарат в дозе 240 мг/кг, имела тенденцию к статистически достоверному увеличению уровня фермента со 2-го дня опыта к 7-му на 19,1% по отношению к контролю. Далее отмечено снижение уровня СОД на 14-й и 21-й дни эксперимента в 1,23 и 1,30 раза в сравнении с контрольными кроликами. Максимальный ферментативный уровень наблюдается на 7 день опыта, а минимальный на 2-й.

Уровень СОД у контрольных животных имел тенденцию к увеличению и составил ко 2-му дню опыта 37,38±0,26 U/мл, что статистически достоверно на 17,2%. 7-й день эксперимента отмечен пиком уровня СОД в контроле и достоверно (р≤0,001) превышающим таковой в опытной в 1,23 раза, составляющим 44,73±0,23 U/мл.

Таблица 1 – Динамика ферментов антиоксидантной системы при однократном внутримышечном введении препарата «Антимиопатик» в дозе 240 мг/кг, (X ± S_x), n₁=16, n₂=16

BECHENNI IDENIA DATA WANTENNIO DELL'ARTE DELL'					
Дни эксперимента	Группы животных	Показатели антиоксидантного статуса			
		СОД, U/мл	КТ, ммоль/гНb×мин	ГПО, мкМ G- SH/л×мин×10 ³	ЦП, мг/л
До введения	контроль (n ₂)	32,19±0,34	39,52±0,90	9,25±0,28	50,93±0,48
	onыт (n₁)	32,07±0,24	39,45±1,62	9,18±0,47	50,41±0,24
2	контроль (n ₂)	37,38±0,26	45,60±1,50	10,31±0,27	57,97±1,11
	onыт (n₁)	31,40±0,70***	39,75±0,86**	13,91±0,24***	72,97±1,08***
7	контроль (n_2)	44,73±0,23	48,50±0,56	11,29±0,08	59,91±0,29
	onыт (n₁)	36,21±0,41***	42,25±0,44**	15,79±0,23***	74,93±1,24***
14	контроль (n ₂)	43,33±0,45	47,60±,078	9,84±0,40	54,47±0,47
	onыт (n₁)	35,12±0,27***	39,65±0,28**	14,18±0,13***	71,24±0,34***
21	контроль (n ₂)	41,72±0,49	45,40±0,12	9,28±0,24	51,54±0,44
	onыт (n₁)	31,98±0,26***	36,77±0,41**	11,19±0,14***	69,81±0,21***

Примечание: достоверность различий по отношению к контролю: $*- p \le 0.05$, $**- p \le 0.01$.

Активность СОД у животных контрольной группы постепенно начала снижаться к концу эксперимента и составила 41,72±0,49 U/мл, ее уровень был достоверно выше, чем в опытной группе на 23,4%.

Наблюдаемая тенденция к увеличению уровня СОД в крови контрольных кроликов, возможно, обусловлена ее незначительной дестабилизацией, возрастными изменениями и усилением адаптивноприспособительных механизмов. Для полноценной ее работы необходимо большее количество микро- и макронутриентов. При нехватке последних происходит значительная лабильность катаболизма и образование недоокисленных продуктов, на инактивацию которых включается КТ.

Анализируя данные по активности КТ у животных, можно отметить следующее. Установлено, что активность фермента у кроликов, которым вводили препарат в дозе 240 мг/кг, на начало эксперимента составила 39,45±1,62 ммоль/гНb×мин. Отмечено, что максимальная активность КТ приходится на 7-й день опыта и составляет 42,25±0,44 ммоль/гНb×мин, а минимальная — 39,45±1,62, в начале. Отмечено достоверное уменьшение ферментативной активности в опытной группе к 7-му и 21-му дню эксперимента, соответственно на 12,9% и 19,1% по отношению к контрольной.

Уровень КТ у животных контрольной группы имел тенденцию к увеличению со 2-го по 7-й день и был на уровне 48,50±0,56 ммоль/гНb×мин, что выше показателя опытной группы в 1,14 раза (р≤0,001). К 21-му дню ее уровень у контрольных животных снизился до 45,40±0,12 ммоль/гНb×мин, но статистически был достоверно выше, чем в опытной, в 1,23 раза.

Наблюдаемая корреляция между уровнем КТ и СОД является не случайной, а биологической закономерностью, поскольку продуктом супероксиддисмутазной реакции является субстрат каталазной реакции H_2O_2 .

У животных, которым вводили препарат в дозе 240 мг/кг, происходит увеличение активности ГПО на 2-й день эксперимента до $13,91\pm0,24$ мкМ G-SH/л×мин× 10^3 . К 7-му дню опыта наблюдается ее максимальный уровень — $15,79\pm0,23$ мкМ G-SH/л×мин× 10^3 , что статистически достоверно выше контроля на 39,8%. К 21-ю дню эксперимента активность снизилась и составила — $11,19\pm0,14$ мкМ G-SH/л×мин× 10^3 . На протяжении опыта уровень данного фермента у животных опытной группы достоверно превышал таковой контроля в, среднем, на 36.6%.

Уровень ГПО у кроликов контрольной группы имел черты динамики, аналогичной опытной, но ее уровень в течение всего эксперимента был достоверно ниже в 1,46 раза. Установлено, что пик активности приходится на 7-й день эксперимента — 11,29±0,08 мкМ G-SH/л×мин×10³, а минимальный уровень - на 21-й день и составляет 9,28±0,24 мкМ G-SH/л×мин×10³.

Такая динамика фермента у опытных животных отражает прежде высокую инкорпорирующую способностью кофермента и его активного центра — селена. Быстрое встраивание селена способствует повышению активности, имеющее свое плато насыщения, при выходе за границы которого наступает состояние перенасыщения, ведущее к бездействию или токсикозу организма. Последнее зависит от компенсаторноприспособительных и адаптивных возможностей организма.

При исследовании ЦП отмечена следующая тенденция.

Со 2-го дня эксперимента активность фермента в опытной группе кроликов составила 72,97±1,08 мг/л и была статистически достоверно выше контрольной на 25,8%. Нарастание активности происходит к 7-му дню на 26,2%, в дальнейшем, к 21-му дню, наблюдается спад на 35,4%. Также установлено, что активность его уменьшалась, но статистически достоверно превышала таковую у контроля к концу опыта.

Активность ЦП животных контрольной группы претерпевала следующие изменения. Как видно из таблицы 1, максимальная активность фермента приходится на 7-й день эксперимента и составляет 59,91±0,29 мг/л, а минимальная — 50,93±0,48 мг/л - в начале опыта. Она нарастает со 2-го по 7-й день опыта, а затем уменьшается к 21-му дню и удерживается на уровне 51,54±0,44 мг/л, что меньше опыта в 1,35 раза.

Увеличение активности ЦП в опытной группе, по нашему мнению, связано с дополнительным введением кофермента данного энзима — меди. Это подтверждается отсутствием какой-либо патологии в организме подопытных животных, при которой фермент имел бы тенденцию к увеличению или уменьшению активности в десятки раз.

Заключение. В рамках проведенного эксперимента наблюдается четкая динамика ферментов антиоксидантной системы в обеих группах лабораторных животных. Введение препарата в дозе 240 мг/кг способствовало динамичным изменениям активности ферментов на протяжении трех недель эксперимента. Вместе с тем, прослеживаются дозо- и времязависимые эффекты, при которых отмечена тенденция к увеличению уровня и активности ферментов антиоксидантной системы в сравнении с контрольной группой животных.

Полученные данные дают основание считать, что «Антимиопатик» регулирует уровень антиоксидантной системы с постепенным его уменьшением к 21-му дню эксперимента, хотя эти показатели были достоверно выше у опытных животных по сравнению с контролем.

Этот факт является основополагающим для выбора доз и схем применения препарата.

Питература. 1. Zinc treatment to under-five children: applications to improve child survival and reduce burden of disease / C.P. Larson [et ai.] // J. Heaith Popu. Nutr. − 2008. − Voi. 26, № 3. − P. 356−365. 2. Wingler, K. Gastrointestinal Giutathione Peroxidase / K. Wingler, R. Brigellus-Flohe // Biofactors. − 1999. − №. 10. − P. 245 − 249. 3. Микроэлементы в иммунологии и онкологии / A.B. Кудрин, О.А. Громова − М.: ГЭОТАР-Медиа, 2007. − 554 с. 4. Bermner I. Metaliothionein in copper deficiency and toxicity / i. Bermner // Trace Eiements in Man and Animals − TEMA-8 / Eds. M. Anke et ai. − Dresden, 1993. − P. 507-513. 5. Мецпер, Д. Биохимия. Химические реакции в живой клетке в 3 т.: Пер. с англ. / Под ред. А.Е. Браунштейна, Л.М. Гинодмана, Е.С. Северина. − М.: Мир, 1980. − 3 т. 6. Скальный, А. В. Биоэлементы в медицине / А. В. Скальный, И. А. Рудаков. − М.: «Издательский дом «Оникс 21 век»: Мир, 2004. − 272 с. 7. Ребров, В.Г. Витамины, микро- и макроэлементы / В.Г. Ребров, О.А. Громова. − М.: ГЭОТАР-Медиа, 2008. − 960 с. 8. Kostyuk, V.A. Superoxide-driven Oxidation of Quercetin and a Simple Sensitive Assay for Determination of Superoxide Dismutases / V.A. Kostyuk, А.і. Potapovich // Biochem. int. − 1989. − Voi. 19. − P. 1117-1124. 9. Королюк М.А. Метод определения активности каталазы / М.А. Королюк [и др.]. // Пабораторное дело. − 1988. − №1. − С. 16-18. 10. Диагностика, терапия и профилактика нарушений обмена веществ у продуктивных животных: методические рекомендации / М.И. Рецкий [и др.]. – Воронеж, 2005. − С. 50-51. 7. 8.

Статья передана в печать 3.01.2011 г.